Metamath Proof Explorer


Theorem subneintrd

Description: Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcand . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1 φA
pncand.2 φB
subaddd.3 φC
subneintrd.4 φBC
Assertion subneintrd φABAC

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 pncand.2 φB
3 subaddd.3 φC
4 subneintrd.4 φBC
5 1 2 3 subcanad φAB=ACB=C
6 5 necon3bid φABACBC
7 4 6 mpbird φABAC