Metamath Proof Explorer
Description: Introducing subtraction on both sides of a statement of inequality.
Contrapositive of subcand . (Contributed by David Moews, 28-Feb-2017)
|
|
Ref |
Expression |
|
Hypotheses |
negidd.1 |
|
|
|
pncand.2 |
|
|
|
subaddd.3 |
|
|
|
subneintrd.4 |
|
|
Assertion |
subneintrd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negidd.1 |
|
| 2 |
|
pncand.2 |
|
| 3 |
|
subaddd.3 |
|
| 4 |
|
subneintrd.4 |
|
| 5 |
1 2 3
|
subcanad |
|
| 6 |
5
|
necon3bid |
|
| 7 |
4 6
|
mpbird |
|