Metamath Proof Explorer


Theorem subrg0

Description: A subring always has the same additive identity. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypotheses subrg0.1 S=R𝑠A
subrg0.2 0˙=0R
Assertion subrg0 ASubRingR0˙=0S

Proof

Step Hyp Ref Expression
1 subrg0.1 S=R𝑠A
2 subrg0.2 0˙=0R
3 subrgsubg ASubRingRASubGrpR
4 1 2 subg0 ASubGrpR0˙=0S
5 3 4 syl ASubRingR0˙=0S