Metamath Proof Explorer


Theorem subsdird

Description: Distribution of surreal multiplication over subtraction. (Contributed by Scott Fenton, 9-Mar-2025)

Ref Expression
Hypotheses addsdid.1 φANo
addsdid.2 φBNo
addsdid.3 φCNo
Assertion subsdird φA-sBsC=AsC-sBsC

Proof

Step Hyp Ref Expression
1 addsdid.1 φANo
2 addsdid.2 φBNo
3 addsdid.3 φCNo
4 3 1 2 subsdid φCsA-sB=CsA-sCsB
5 1 2 subscld φA-sBNo
6 5 3 mulscomd φA-sBsC=CsA-sB
7 1 3 mulscomd φAsC=CsA
8 2 3 mulscomd φBsC=CsB
9 7 8 oveq12d φAsC-sBsC=CsA-sCsB
10 4 6 9 3eqtr4d φA-sBsC=AsC-sBsC