Metamath Proof Explorer


Theorem subsub3d

Description: Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φA
pncand.2 φB
subaddd.3 φC
Assertion subsub3d φABC=A+C-B

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 pncand.2 φB
3 subaddd.3 φC
4 subsub3 ABCABC=A+C-B
5 1 2 3 4 syl3anc φABC=A+C-B