Metamath Proof Explorer


Theorem subtr2

Description: Transitivity of implicit substitution into a wff. (Contributed by Jeff Hankins, 19-Sep-2009) (Proof shortened by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses subtr.1 _ x A
subtr.2 _ x B
subtr2.3 x ψ
subtr2.4 x χ
subtr2.5 x = A φ ψ
subtr2.6 x = B φ χ
Assertion subtr2 A C B D A = B ψ χ

Proof

Step Hyp Ref Expression
1 subtr.1 _ x A
2 subtr.2 _ x B
3 subtr2.3 x ψ
4 subtr2.4 x χ
5 subtr2.5 x = A φ ψ
6 subtr2.6 x = B φ χ
7 1 2 nfeq x A = B
8 3 4 nfbi x ψ χ
9 7 8 nfim x A = B ψ χ
10 eqeq1 x = A x = B A = B
11 5 bibi1d x = A φ χ ψ χ
12 10 11 imbi12d x = A x = B φ χ A = B ψ χ
13 1 9 12 6 vtoclgf A C A = B ψ χ
14 13 adantr A C B D A = B ψ χ