Metamath Proof Explorer


Theorem subtr2

Description: Transitivity of implicit substitution into a wff. (Contributed by Jeff Hankins, 19-Sep-2009) (Proof shortened by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses subtr.1 _xA
subtr.2 _xB
subtr2.3 xψ
subtr2.4 xχ
subtr2.5 x=Aφψ
subtr2.6 x=Bφχ
Assertion subtr2 ACBDA=Bψχ

Proof

Step Hyp Ref Expression
1 subtr.1 _xA
2 subtr.2 _xB
3 subtr2.3 xψ
4 subtr2.4 xχ
5 subtr2.5 x=Aφψ
6 subtr2.6 x=Bφχ
7 1 2 nfeq xA=B
8 3 4 nfbi xψχ
9 7 8 nfim xA=Bψχ
10 eqeq1 x=Ax=BA=B
11 5 bibi1d x=Aφχψχ
12 10 11 imbi12d x=Ax=BφχA=Bψχ
13 1 9 12 6 vtoclgf ACA=Bψχ
14 13 adantr ACBDA=Bψχ