Metamath Proof Explorer


Theorem suctrALTcf

Description: The sucessor of a transitive class is transitive. suctrALTcf , using conventional notation, was translated from virtual deduction form, suctrALTcfVD , using a translation program. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion suctrALTcf TrATrsucA

Proof

Step Hyp Ref Expression
1 sssucid AsucA
2 id TrATrA
3 id zyysucAzyysucA
4 simpl zyysucAzy
5 3 4 syl zyysucAzy
6 id yAyA
7 trel TrAzyyAzA
8 7 3impib TrAzyyAzA
9 2 5 6 8 syl3an TrAzyysucAyAzA
10 ssel2 AsucAzAzsucA
11 1 9 10 eel0321old TrAzyysucAyAzsucA
12 11 3expia TrAzyysucAyAzsucA
13 id y=Ay=A
14 eleq2 y=AzyzA
15 14 biimpac zyy=AzA
16 5 13 15 syl2an zyysucAy=AzA
17 1 16 10 eel021old zyysucAy=AzsucA
18 17 ex zyysucAy=AzsucA
19 simpr zyysucAysucA
20 3 19 syl zyysucAysucA
21 elsuci ysucAyAy=A
22 20 21 syl zyysucAyAy=A
23 jao yAzsucAy=AzsucAyAy=AzsucA
24 23 3imp yAzsucAy=AzsucAyAy=AzsucA
25 12 18 22 24 eel2122old TrAzyysucAzsucA
26 25 ex TrAzyysucAzsucA
27 26 alrimivv TrAzyzyysucAzsucA
28 dftr2 TrsucAzyzyysucAzsucA
29 28 biimpri zyzyysucAzsucATrsucA
30 27 29 syl TrATrsucA
31 30 iin1 TrATrsucA