Metamath Proof Explorer


Theorem sumeq2

Description: Equality theorem for sum. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 13-Jul-2013)

Ref Expression
Assertion sumeq2 kAB=CkAB=kAC

Proof

Step Hyp Ref Expression
1 fveq2 B=CIB=IC
2 1 ralimi kAB=CkAIB=IC
3 sumeq2ii kAIB=ICkAB=kAC
4 2 3 syl kAB=CkAB=kAC