Metamath Proof Explorer


Theorem supcl

Description: A supremum belongs to its base class (closure law). See also supub and suplub . (Contributed by NM, 12-Oct-2004)

Ref Expression
Hypotheses supmo.1 φROrA
supcl.2 φxAyB¬xRyyAyRxzByRz
Assertion supcl φsupBARA

Proof

Step Hyp Ref Expression
1 supmo.1 φROrA
2 supcl.2 φxAyB¬xRyyAyRxzByRz
3 1 supval2 φsupBAR=ιxA|yB¬xRyyAyRxzByRz
4 1 2 supeu φ∃!xAyB¬xRyyAyRxzByRz
5 riotacl ∃!xAyB¬xRyyAyRxzByRzιxA|yB¬xRyyAyRxzByRzA
6 4 5 syl φιxA|yB¬xRyyAyRxzByRzA
7 3 6 eqeltrd φsupBARA