Metamath Proof Explorer


Theorem supnub

Description: An upper bound is not less than the supremum. (Contributed by NM, 13-Oct-2004)

Ref Expression
Hypotheses supmo.1 φROrA
supcl.2 φxAyB¬xRyyAyRxzByRz
Assertion supnub φCAzB¬CRz¬CRsupBAR

Proof

Step Hyp Ref Expression
1 supmo.1 φROrA
2 supcl.2 φxAyB¬xRyyAyRxzByRz
3 1 2 suplub φCACRsupBARzBCRz
4 3 expdimp φCACRsupBARzBCRz
5 dfrex2 zBCRz¬zB¬CRz
6 4 5 imbitrdi φCACRsupBAR¬zB¬CRz
7 6 con2d φCAzB¬CRz¬CRsupBAR
8 7 expimpd φCAzB¬CRz¬CRsupBAR