| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supmo.1 |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
| 2 |
|
supcl.2 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) |
| 3 |
1 2
|
suplub |
⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) → ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ) ) |
| 4 |
3
|
expdimp |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ) ) |
| 5 |
|
dfrex2 |
⊢ ( ∃ 𝑧 ∈ 𝐵 𝐶 𝑅 𝑧 ↔ ¬ ∀ 𝑧 ∈ 𝐵 ¬ 𝐶 𝑅 𝑧 ) |
| 6 |
4 5
|
imbitrdi |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) → ¬ ∀ 𝑧 ∈ 𝐵 ¬ 𝐶 𝑅 𝑧 ) ) |
| 7 |
6
|
con2d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐵 ¬ 𝐶 𝑅 𝑧 → ¬ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
| 8 |
7
|
expimpd |
⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐵 ¬ 𝐶 𝑅 𝑧 ) → ¬ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |