Metamath Proof Explorer


Theorem supp0

Description: The support of the empty set is the empty set. (Contributed by AV, 12-Apr-2019)

Ref Expression
Assertion supp0 ZWsuppZ=

Proof

Step Hyp Ref Expression
1 0ex V
2 suppval VZWsuppZ=idom|iZ
3 1 2 mpan ZWsuppZ=idom|iZ
4 dm0 dom=
5 rabeq dom=idom|iZ=i|iZ
6 4 5 mp1i ZWidom|iZ=i|iZ
7 rab0 i|iZ=
8 7 a1i ZWi|iZ=
9 3 6 8 3eqtrd ZWsuppZ=