Metamath Proof Explorer


Theorem supssd

Description: Inequality deduction for supremum of a subset. (Contributed by Thierry Arnoux, 21-Mar-2017)

Ref Expression
Hypotheses supssd.0 φROrA
supssd.1 φBC
supssd.2 φCA
supssd.3 φxAyB¬xRyyAyRxzByRz
supssd.4 φxAyC¬xRyyAyRxzCyRz
Assertion supssd φ¬supCARRsupBAR

Proof

Step Hyp Ref Expression
1 supssd.0 φROrA
2 supssd.1 φBC
3 supssd.2 φCA
4 supssd.3 φxAyB¬xRyyAyRxzByRz
5 supssd.4 φxAyC¬xRyyAyRxzCyRz
6 1 5 supcl φsupCARA
7 2 sseld φzBzC
8 1 5 supub φzC¬supCARRz
9 7 8 syld φzB¬supCARRz
10 9 ralrimiv φzB¬supCARRz
11 1 4 supnub φsupCARAzB¬supCARRz¬supCARRsupBAR
12 6 10 11 mp2and φ¬supCARRsupBAR