Metamath Proof Explorer


Theorem supxrcli

Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis supxrcli.1 A*
Assertion supxrcli supA*<*

Proof

Step Hyp Ref Expression
1 supxrcli.1 A*
2 supxrcl A*supA*<*
3 1 2 ax-mp supA*<*