Metamath Proof Explorer


Theorem svrelfun

Description: A single-valued relation is a function. (See fun2cnv for "single-valued.") Definition 6.4(4) of TakeutiZaring p. 24. (Contributed by NM, 17-Jan-2006)

Ref Expression
Assertion svrelfun FunARelAFunA-1-1

Proof

Step Hyp Ref Expression
1 dffun6 FunARelAx*yxAy
2 fun2cnv FunA-1-1x*yxAy
3 2 anbi2i RelAFunA-1-1RelAx*yxAy
4 1 3 bitr4i FunARelAFunA-1-1