Metamath Proof Explorer


Theorem swapf2fn

Description: The morphism part of the swap functor is a function on the Cartesian square of the base set. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapfval.c φ C U
swapfval.d φ D V
swapf2fvala.s S = C × c D
swapf2fvala.b B = Base S
swapf1val.o No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
Assertion swapf2fn φ P Fn B × B

Proof

Step Hyp Ref Expression
1 swapfval.c φ C U
2 swapfval.d φ D V
3 swapf2fvala.s S = C × c D
4 swapf2fvala.b B = Base S
5 swapf1val.o Could not format ( ph -> ( C swapF D ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
6 eqid u B , v B f u Hom S v f -1 = u B , v B f u Hom S v f -1
7 ovex u Hom S v V
8 7 mptex f u Hom S v f -1 V
9 6 8 fnmpoi u B , v B f u Hom S v f -1 Fn B × B
10 eqidd φ Hom S = Hom S
11 1 2 3 4 10 5 swapf2fval φ P = u B , v B f u Hom S v f -1
12 11 fneq1d φ P Fn B × B u B , v B f u Hom S v f -1 Fn B × B
13 9 12 mpbiri φ P Fn B × B