Metamath Proof Explorer


Theorem swrdsb0eq

Description: Two subwords with the same bounds are equal if the range is not valid. (Contributed by AV, 4-May-2020)

Ref Expression
Assertion swrdsb0eq WWordVUWordVM0N0NMWsubstrMN=UsubstrMN

Proof

Step Hyp Ref Expression
1 simpll WWordVUWordVM0N0WWordV
2 nn0z M0M
3 2 ad2antrl WWordVUWordVM0N0M
4 nn0z N0N
5 4 ad2antll WWordVUWordVM0N0N
6 swrdlend WWordVMNNMWsubstrMN=
7 1 3 5 6 syl3anc WWordVUWordVM0N0NMWsubstrMN=
8 7 3impia WWordVUWordVM0N0NMWsubstrMN=
9 simplr WWordVUWordVM0N0UWordV
10 swrdlend UWordVMNNMUsubstrMN=
11 9 3 5 10 syl3anc WWordVUWordVM0N0NMUsubstrMN=
12 11 3impia WWordVUWordVM0N0NMUsubstrMN=
13 8 12 eqtr4d WWordVUWordVM0N0NMWsubstrMN=UsubstrMN