Metamath Proof Explorer
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)
|
|
Ref |
Expression |
|
Hypotheses |
syl3anc.1 |
|
|
|
syl3anc.2 |
|
|
|
syl3anc.3 |
|
|
|
syl3Xanc.4 |
|
|
|
syl23anc.5 |
|
|
|
syl131anc.6 |
|
|
Assertion |
syl131anc |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syl3anc.1 |
|
2 |
|
syl3anc.2 |
|
3 |
|
syl3anc.3 |
|
4 |
|
syl3Xanc.4 |
|
5 |
|
syl23anc.5 |
|
6 |
|
syl131anc.6 |
|
7 |
2 3 4
|
3jca |
|
8 |
1 7 5 6
|
syl3anc |
|