Metamath Proof Explorer
		
		
		
		Description:  Syllogism inference.  (Contributed by Peter Mazsa, 18-Sep-2022)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | syl21anbrc.1 |  | 
					
						|  |  | syl21anbrc.2 |  | 
					
						|  |  | syl21anbrc.3 |  | 
					
						|  |  | syl21anbrc.4 |  | 
				
					|  | Assertion | syl21anbrc |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | syl21anbrc.1 |  | 
						
							| 2 |  | syl21anbrc.2 |  | 
						
							| 3 |  | syl21anbrc.3 |  | 
						
							| 4 |  | syl21anbrc.4 |  | 
						
							| 5 | 1 2 3 | jca31 |  | 
						
							| 6 | 5 4 | sylibr |  |