Metamath Proof Explorer


Theorem syl2imc

Description: A commuted version of syl2im . Implication-only version of syl2anr . (Contributed by BJ, 20-Oct-2021)

Ref Expression
Hypotheses syl2im.1 φψ
syl2im.2 χθ
syl2im.3 ψθτ
Assertion syl2imc χφτ

Proof

Step Hyp Ref Expression
1 syl2im.1 φψ
2 syl2im.2 χθ
3 syl2im.3 ψθτ
4 1 2 3 syl2im φχτ
5 4 com12 χφτ