Metamath Proof Explorer


Theorem sylan9req

Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007)

Ref Expression
Hypotheses sylan9req.1 φB=A
sylan9req.2 ψB=C
Assertion sylan9req φψA=C

Proof

Step Hyp Ref Expression
1 sylan9req.1 φB=A
2 sylan9req.2 ψB=C
3 1 eqcomd φA=B
4 3 2 sylan9eq φψA=C