Metamath Proof Explorer


Theorem sylbid

Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994)

Ref Expression
Hypotheses sylbid.1 φ ψ χ
sylbid.2 φ χ θ
Assertion sylbid φ ψ θ

Proof

Step Hyp Ref Expression
1 sylbid.1 φ ψ χ
2 sylbid.2 φ χ θ
3 1 biimpd φ ψ χ
4 3 2 syld φ ψ θ