Metamath Proof Explorer


Theorem sylbid

Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994)

Ref Expression
Hypotheses sylbid.1 φψχ
sylbid.2 φχθ
Assertion sylbid φψθ

Proof

Step Hyp Ref Expression
1 sylbid.1 φψχ
2 sylbid.2 φχθ
3 1 biimpd φψχ
4 3 2 syld φψθ