Metamath Proof Explorer


Theorem sylibrd

Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994)

Ref Expression
Hypotheses sylibrd.1 φψχ
sylibrd.2 φθχ
Assertion sylibrd φψθ

Proof

Step Hyp Ref Expression
1 sylibrd.1 φψχ
2 sylibrd.2 φθχ
3 2 biimprd φχθ
4 1 3 syld φψθ