Metamath Proof Explorer


Theorem symdifv

Description: The symmetric difference with the universal class is the complement. (Contributed by Scott Fenton, 24-Apr-2012)

Ref Expression
Assertion symdifv AV=VA

Proof

Step Hyp Ref Expression
1 df-symdif AV=AVVA
2 ssv AV
3 ssdif0 AVAV=
4 2 3 mpbi AV=
5 4 uneq1i AVVA=VA
6 uncom VA=VA
7 un0 VA=VA
8 6 7 eqtri VA=VA
9 5 8 eqtri AVVA=VA
10 1 9 eqtri AV=VA