Description: The symmetric difference with the universal class is the complement. (Contributed by Scott Fenton, 24-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | symdifv | |- ( A /_\ _V ) = ( _V \ A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-symdif | |- ( A /_\ _V ) = ( ( A \ _V ) u. ( _V \ A ) ) | |
| 2 | ssv | |- A C_ _V | |
| 3 | ssdif0 | |- ( A C_ _V <-> ( A \ _V ) = (/) ) | |
| 4 | 2 3 | mpbi | |- ( A \ _V ) = (/) | 
| 5 | 4 | uneq1i | |- ( ( A \ _V ) u. ( _V \ A ) ) = ( (/) u. ( _V \ A ) ) | 
| 6 | uncom | |- ( (/) u. ( _V \ A ) ) = ( ( _V \ A ) u. (/) ) | |
| 7 | un0 | |- ( ( _V \ A ) u. (/) ) = ( _V \ A ) | |
| 8 | 6 7 | eqtri | |- ( (/) u. ( _V \ A ) ) = ( _V \ A ) | 
| 9 | 5 8 | eqtri | |- ( ( A \ _V ) u. ( _V \ A ) ) = ( _V \ A ) | 
| 10 | 1 9 | eqtri | |- ( A /_\ _V ) = ( _V \ A ) |