Description: The symmetric difference with the universal class is the complement. (Contributed by Scott Fenton, 24-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | symdifv | ⊢ ( 𝐴 △ V ) = ( V ∖ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-symdif | ⊢ ( 𝐴 △ V ) = ( ( 𝐴 ∖ V ) ∪ ( V ∖ 𝐴 ) ) | |
| 2 | ssv | ⊢ 𝐴 ⊆ V | |
| 3 | ssdif0 | ⊢ ( 𝐴 ⊆ V ↔ ( 𝐴 ∖ V ) = ∅ ) | |
| 4 | 2 3 | mpbi | ⊢ ( 𝐴 ∖ V ) = ∅ |
| 5 | 4 | uneq1i | ⊢ ( ( 𝐴 ∖ V ) ∪ ( V ∖ 𝐴 ) ) = ( ∅ ∪ ( V ∖ 𝐴 ) ) |
| 6 | uncom | ⊢ ( ∅ ∪ ( V ∖ 𝐴 ) ) = ( ( V ∖ 𝐴 ) ∪ ∅ ) | |
| 7 | un0 | ⊢ ( ( V ∖ 𝐴 ) ∪ ∅ ) = ( V ∖ 𝐴 ) | |
| 8 | 6 7 | eqtri | ⊢ ( ∅ ∪ ( V ∖ 𝐴 ) ) = ( V ∖ 𝐴 ) |
| 9 | 5 8 | eqtri | ⊢ ( ( 𝐴 ∖ V ) ∪ ( V ∖ 𝐴 ) ) = ( V ∖ 𝐴 ) |
| 10 | 1 9 | eqtri | ⊢ ( 𝐴 △ V ) = ( V ∖ 𝐴 ) |