Metamath Proof Explorer


Theorem symghash

Description: The symmetric group on n objects has cardinality n ! . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses symgbas.1 G=SymGrpA
symgbas.2 B=BaseG
Assertion symghash AFinB=A!

Proof

Step Hyp Ref Expression
1 symgbas.1 G=SymGrpA
2 symgbas.2 B=BaseG
3 1 2 symgbas B=f|f:A1-1 ontoA
4 3 fveq2i B=f|f:A1-1 ontoA
5 hashfac AFinf|f:A1-1 ontoA=A!
6 4 5 eqtrid AFinB=A!