Metamath Proof Explorer


Theorem symgmov2

Description: For a permutation of a set, each element of the set is replaced by an(other) element of the set. (Contributed by AV, 2-Jan-2019)

Ref Expression
Hypothesis symgmov1.p P=BaseSymGrpN
Assertion symgmov2 QPnNkNQk=n

Proof

Step Hyp Ref Expression
1 symgmov1.p P=BaseSymGrpN
2 eqid SymGrpN=SymGrpN
3 2 1 symgbasf1o QPQ:N1-1 ontoN
4 f1ofo Q:N1-1 ontoNQ:NontoN
5 foelcdmi Q:NontoNnNkNQk=n
6 5 ralrimiva Q:NontoNnNkNQk=n
7 3 4 6 3syl QPnNkNQk=n