Metamath Proof Explorer


Theorem tc00

Description: The transitive closure is empty iff its argument is. Proof suggested by Gérard Lang. (Contributed by Mario Carneiro, 4-Jun-2015)

Ref Expression
Assertion tc00 AVTCA=A=

Proof

Step Hyp Ref Expression
1 tcid AVATCA
2 sseq0 ATCATCA=A=
3 2 ex ATCATCA=A=
4 1 3 syl AVTCA=A=
5 fveq2 A=TCA=TC
6 tc0 TC=
7 5 6 eqtrdi A=TCA=
8 4 7 impbid1 AVTCA=A=