Description: The transitive closure is empty iff its argument is. Proof suggested by Gérard Lang. (Contributed by Mario Carneiro, 4-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tc00 | |- ( A e. V -> ( ( TC ` A ) = (/) <-> A = (/) ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tcid | |- ( A e. V -> A C_ ( TC ` A ) )  | 
						|
| 2 | sseq0 | |- ( ( A C_ ( TC ` A ) /\ ( TC ` A ) = (/) ) -> A = (/) )  | 
						|
| 3 | 2 | ex | |- ( A C_ ( TC ` A ) -> ( ( TC ` A ) = (/) -> A = (/) ) )  | 
						
| 4 | 1 3 | syl | |- ( A e. V -> ( ( TC ` A ) = (/) -> A = (/) ) )  | 
						
| 5 | fveq2 | |- ( A = (/) -> ( TC ` A ) = ( TC ` (/) ) )  | 
						|
| 6 | tc0 | |- ( TC ` (/) ) = (/)  | 
						|
| 7 | 5 6 | eqtrdi | |- ( A = (/) -> ( TC ` A ) = (/) )  | 
						
| 8 | 4 7 | impbid1 | |- ( A e. V -> ( ( TC ` A ) = (/) <-> A = (/) ) )  |