Metamath Proof Explorer


Theorem tchplusg

Description: The addition operation of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n G=toCPreHilW
tchplusg.v +˙=+W
Assertion tchplusg +˙=+G

Proof

Step Hyp Ref Expression
1 tcphval.n G=toCPreHilW
2 tchplusg.v +˙=+W
3 eqid BaseW=BaseW
4 3 tcphex xBaseWx𝑖WxV
5 eqid 𝑖W=𝑖W
6 1 3 5 tcphval G=WtoNrmGrpxBaseWx𝑖Wx
7 6 2 tngplusg xBaseWx𝑖WxV+˙=+G
8 4 7 ax-mp +˙=+G