Metamath Proof Explorer


Theorem tngplusg

Description: The group addition of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses tngbas.t T = G toNrmGrp N
tngplusg.2 + ˙ = + G
Assertion tngplusg N V + ˙ = + T

Proof

Step Hyp Ref Expression
1 tngbas.t T = G toNrmGrp N
2 tngplusg.2 + ˙ = + G
3 plusgid + 𝑔 = Slot + ndx
4 tsetndxnplusgndx TopSet ndx + ndx
5 4 necomi + ndx TopSet ndx
6 dsndxnplusgndx dist ndx + ndx
7 6 necomi + ndx dist ndx
8 1 3 5 7 tnglem N V + G = + T
9 2 8 syl5eq N V + ˙ = + T