Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
tendospcl
Next ⟩
tendospass
Metamath Proof Explorer
Ascii
Unicode
Theorem
tendospcl
Description:
Closure of endomorphism scalar product operation.
(Contributed by
NM
, 10-Oct-2013)
Ref
Expression
Hypotheses
tendosp.h
⊢
H
=
LHyp
⁡
K
tendosp.t
⊢
T
=
LTrn
⁡
K
⁡
W
tendosp.e
⊢
E
=
TEndo
⁡
K
⁡
W
Assertion
tendospcl
⊢
K
∈
V
∧
W
∈
H
∧
U
∈
E
∧
F
∈
T
→
U
⁡
F
∈
T
Proof
Step
Hyp
Ref
Expression
1
tendosp.h
⊢
H
=
LHyp
⁡
K
2
tendosp.t
⊢
T
=
LTrn
⁡
K
⁡
W
3
tendosp.e
⊢
E
=
TEndo
⁡
K
⁡
W
4
1
2
3
tendocl
⊢
K
∈
V
∧
W
∈
H
∧
U
∈
E
∧
F
∈
T
→
U
⁡
F
∈
T