Metamath Proof Explorer


Theorem termchommo

Description: All morphisms of a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses termcbas.c No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
termcbas.b B = Base C
termcbasmo.x φ X B
termcbasmo.y φ Y B
termcid.h H = Hom C
termcid.f φ F X H Y
termchommo.x φ Z B
termchommo.y φ W B
termchommo.f φ G Z H W
Assertion termchommo φ F = G

Proof

Step Hyp Ref Expression
1 termcbas.c Could not format ( ph -> C e. TermCat ) : No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
2 termcbas.b B = Base C
3 termcbasmo.x φ X B
4 termcbasmo.y φ Y B
5 termcid.h H = Hom C
6 termcid.f φ F X H Y
7 termchommo.x φ Z B
8 termchommo.y φ W B
9 termchommo.f φ G Z H W
10 1 2 3 7 termcbasmo φ X = Z
11 1 2 4 8 termcbasmo φ Y = W
12 10 11 oveq12d φ X H Y = Z H W
13 9 12 eleqtrrd φ G X H Y
14 1 termcthind φ C ThinCat
15 3 4 6 13 2 5 14 thincmo2 φ F = G