Metamath Proof Explorer


Theorem tfrlem14

Description: Lemma for transfinite recursion. Assuming ax-rep , dom recs e.V <-> recs e. V , so since dom recs is an ordinal, it must be equal to On . (Contributed by NM, 14-Aug-1994) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Hypothesis tfrlem.1 A=f|xOnfFnxyxfy=Ffy
Assertion tfrlem14 domrecsF=On

Proof

Step Hyp Ref Expression
1 tfrlem.1 A=f|xOnfFnxyxfy=Ffy
2 1 tfrlem13 ¬recsFV
3 1 tfrlem7 FunrecsF
4 funex FunrecsFdomrecsFOnrecsFV
5 3 4 mpan domrecsFOnrecsFV
6 2 5 mto ¬domrecsFOn
7 1 tfrlem8 OrddomrecsF
8 ordeleqon OrddomrecsFdomrecsFOndomrecsF=On
9 7 8 mpbi domrecsFOndomrecsF=On
10 6 9 mtpor domrecsF=On