Metamath Proof Explorer


Theorem tgcgrcomimp

Description: Congruence commutes on the RHS. Theorem 2.5 of Schwabhauser p. 27. (Contributed by David A. Wheeler, 29-Jun-2020)

Ref Expression
Hypotheses tkgeom.p P=BaseG
tkgeom.d -˙=distG
tkgeom.i I=ItvG
tkgeom.g φG𝒢Tarski
tgcgrcomimp.a φAP
tgcgrcomimp.b φBP
tgcgrcomimp.c φCP
tgcgrcomimp.d φDP
Assertion tgcgrcomimp φA-˙B=C-˙DA-˙B=D-˙C

Proof

Step Hyp Ref Expression
1 tkgeom.p P=BaseG
2 tkgeom.d -˙=distG
3 tkgeom.i I=ItvG
4 tkgeom.g φG𝒢Tarski
5 tgcgrcomimp.a φAP
6 tgcgrcomimp.b φBP
7 tgcgrcomimp.c φCP
8 tgcgrcomimp.d φDP
9 1 2 3 4 7 8 axtgcgrrflx φC-˙D=D-˙C
10 9 eqeq2d φA-˙B=C-˙DA-˙B=D-˙C
11 10 biimpd φA-˙B=C-˙DA-˙B=D-˙C