Metamath Proof Explorer


Theorem tgcgrcomimp

Description: Congruence commutes on the RHS. Theorem 2.5 of Schwabhauser p. 27. (Contributed by David A. Wheeler, 29-Jun-2020)

Ref Expression
Hypotheses tkgeom.p P = Base G
tkgeom.d - ˙ = dist G
tkgeom.i I = Itv G
tkgeom.g φ G 𝒢 Tarski
tgcgrcomimp.a φ A P
tgcgrcomimp.b φ B P
tgcgrcomimp.c φ C P
tgcgrcomimp.d φ D P
Assertion tgcgrcomimp φ A - ˙ B = C - ˙ D A - ˙ B = D - ˙ C

Proof

Step Hyp Ref Expression
1 tkgeom.p P = Base G
2 tkgeom.d - ˙ = dist G
3 tkgeom.i I = Itv G
4 tkgeom.g φ G 𝒢 Tarski
5 tgcgrcomimp.a φ A P
6 tgcgrcomimp.b φ B P
7 tgcgrcomimp.c φ C P
8 tgcgrcomimp.d φ D P
9 1 2 3 4 7 8 axtgcgrrflx φ C - ˙ D = D - ˙ C
10 9 eqeq2d φ A - ˙ B = C - ˙ D A - ˙ B = D - ˙ C
11 10 biimpd φ A - ˙ B = C - ˙ D A - ˙ B = D - ˙ C