Metamath Proof Explorer


Theorem tglnne

Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 27-Nov-2019)

Ref Expression
Hypotheses tglineelsb2.p B=BaseG
tglineelsb2.i I=ItvG
tglineelsb2.l L=Line𝒢G
tglineelsb2.g φG𝒢Tarski
tglnne.x φXB
tglnne.y φYB
tglnne.1 φXLYranL
Assertion tglnne φXY

Proof

Step Hyp Ref Expression
1 tglineelsb2.p B=BaseG
2 tglineelsb2.i I=ItvG
3 tglineelsb2.l L=Line𝒢G
4 tglineelsb2.g φG𝒢Tarski
5 tglnne.x φXB
6 tglnne.y φYB
7 tglnne.1 φXLYranL
8 4 ad3antrrr φxByBXLY=xLyxyG𝒢Tarski
9 5 ad3antrrr φxByBXLY=xLyxyXB
10 6 ad3antrrr φxByBXLY=xLyxyYB
11 simpllr φxByBXLY=xLyxyxB
12 simplr φxByBXLY=xLyxyyB
13 simprr φxByBXLY=xLyxyxy
14 eqid distG=distG
15 1 14 2 8 11 12 tgbtwntriv1 φxByBXLY=xLyxyxxIy
16 1 2 3 8 11 12 11 13 15 btwnlng1 φxByBXLY=xLyxyxxLy
17 simprl φxByBXLY=xLyxyXLY=xLy
18 16 17 eleqtrrd φxByBXLY=xLyxyxXLY
19 1 3 2 8 9 10 18 tglngne φxByBXLY=xLyxyXY
20 1 2 3 4 7 tgisline φxByBXLY=xLyxy
21 19 20 r19.29vva φXY