Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
tgrpgrp
Next ⟩
tgrpabl
Metamath Proof Explorer
Ascii
Unicode
Theorem
tgrpgrp
Description:
The translation group is a group.
(Contributed by
NM
, 6-Jun-2013)
Ref
Expression
Hypotheses
tgrpgrp.h
⊢
H
=
LHyp
⁡
K
tgrpgrp.g
⊢
G
=
TGrp
⁡
K
⁡
W
Assertion
tgrpgrp
⊢
K
∈
HL
∧
W
∈
H
→
G
∈
Grp
Proof
Step
Hyp
Ref
Expression
1
tgrpgrp.h
⊢
H
=
LHyp
⁡
K
2
tgrpgrp.g
⊢
G
=
TGrp
⁡
K
⁡
W
3
eqid
⊢
LTrn
⁡
K
⁡
W
=
LTrn
⁡
K
⁡
W
4
eqid
⊢
+
G
=
+
G
5
eqid
⊢
Base
K
=
Base
K
6
1
3
2
4
5
tgrpgrplem
⊢
K
∈
HL
∧
W
∈
H
→
G
∈
Grp