Description: The translation group is a group. (Contributed by NM, 6-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgrpgrp.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
tgrpgrp.g | ⊢ 𝐺 = ( ( TGrp ‘ 𝐾 ) ‘ 𝑊 ) | ||
Assertion | tgrpgrp | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐺 ∈ Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgrpgrp.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
2 | tgrpgrp.g | ⊢ 𝐺 = ( ( TGrp ‘ 𝐾 ) ‘ 𝑊 ) | |
3 | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | |
4 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
5 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
6 | 1 3 2 4 5 | tgrpgrplem | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐺 ∈ Grp ) |