Description: The translation group is a group. (Contributed by NM, 6-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgrpgrp.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| tgrpgrp.g | ⊢ 𝐺 = ( ( TGrp ‘ 𝐾 ) ‘ 𝑊 ) | ||
| Assertion | tgrpgrp | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐺 ∈ Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgrpgrp.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| 2 | tgrpgrp.g | ⊢ 𝐺 = ( ( TGrp ‘ 𝐾 ) ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 6 | 1 3 2 4 5 | tgrpgrplem | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐺 ∈ Grp ) |