| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgrpset.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
tgrpset.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
tgrpset.g |
⊢ 𝐺 = ( ( TGrp ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
tgrp.o |
⊢ + = ( +g ‘ 𝐺 ) |
| 5 |
|
tgrp.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 7 |
1 2 3 6
|
tgrpbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝐺 ) = 𝑇 ) |
| 8 |
7
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑇 = ( Base ‘ 𝐺 ) ) |
| 9 |
4
|
a1i |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → + = ( +g ‘ 𝐺 ) ) |
| 10 |
1 2 3 4
|
tgrpov |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
| 11 |
10
|
3expa |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
| 12 |
11
|
3impb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
| 13 |
1 2
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ) → ( 𝑥 ∘ 𝑦 ) ∈ 𝑇 ) |
| 14 |
12 13
|
eqeltrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ) → ( 𝑥 + 𝑦 ) ∈ 𝑇 ) |
| 15 |
|
coass |
⊢ ( ( 𝑥 ∘ 𝑦 ) ∘ 𝑧 ) = ( 𝑥 ∘ ( 𝑦 ∘ 𝑧 ) ) |
| 16 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝐾 ∈ HL ) |
| 17 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑊 ∈ 𝐻 ) |
| 18 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑥 ∈ 𝑇 ) |
| 19 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑦 ∈ 𝑇 ) |
| 20 |
16 17 18 19 10
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
| 21 |
20
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( ( 𝑥 ∘ 𝑦 ) + 𝑧 ) ) |
| 22 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 23 |
22 18 19 13
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑥 ∘ 𝑦 ) ∈ 𝑇 ) |
| 24 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑧 ∈ 𝑇 ) |
| 25 |
1 2 3 4
|
tgrpov |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( ( 𝑥 ∘ 𝑦 ) ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝑥 ∘ 𝑦 ) + 𝑧 ) = ( ( 𝑥 ∘ 𝑦 ) ∘ 𝑧 ) ) |
| 26 |
16 17 23 24 25
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝑥 ∘ 𝑦 ) + 𝑧 ) = ( ( 𝑥 ∘ 𝑦 ) ∘ 𝑧 ) ) |
| 27 |
21 26
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( ( 𝑥 ∘ 𝑦 ) ∘ 𝑧 ) ) |
| 28 |
1 2 3 4
|
tgrpov |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑦 + 𝑧 ) = ( 𝑦 ∘ 𝑧 ) ) |
| 29 |
16 17 19 24 28
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑦 + 𝑧 ) = ( 𝑦 ∘ 𝑧 ) ) |
| 30 |
29
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑥 + ( 𝑦 + 𝑧 ) ) = ( 𝑥 + ( 𝑦 ∘ 𝑧 ) ) ) |
| 31 |
1 2
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) → ( 𝑦 ∘ 𝑧 ) ∈ 𝑇 ) |
| 32 |
22 19 24 31
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑦 ∘ 𝑧 ) ∈ 𝑇 ) |
| 33 |
1 2 3 4
|
tgrpov |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑥 ∈ 𝑇 ∧ ( 𝑦 ∘ 𝑧 ) ∈ 𝑇 ) ) → ( 𝑥 + ( 𝑦 ∘ 𝑧 ) ) = ( 𝑥 ∘ ( 𝑦 ∘ 𝑧 ) ) ) |
| 34 |
16 17 18 32 33
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑥 + ( 𝑦 ∘ 𝑧 ) ) = ( 𝑥 ∘ ( 𝑦 ∘ 𝑧 ) ) ) |
| 35 |
30 34
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑥 + ( 𝑦 + 𝑧 ) ) = ( 𝑥 ∘ ( 𝑦 ∘ 𝑧 ) ) ) |
| 36 |
15 27 35
|
3eqtr4a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 37 |
5 1 2
|
idltrn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝐵 ) ∈ 𝑇 ) |
| 38 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑇 ) → 𝐾 ∈ HL ) |
| 39 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑇 ) → 𝑊 ∈ 𝐻 ) |
| 40 |
37
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑇 ) → ( I ↾ 𝐵 ) ∈ 𝑇 ) |
| 41 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ 𝑇 ) |
| 42 |
1 2 3 4
|
tgrpov |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( ( I ↾ 𝐵 ) ∈ 𝑇 ∧ 𝑥 ∈ 𝑇 ) ) → ( ( I ↾ 𝐵 ) + 𝑥 ) = ( ( I ↾ 𝐵 ) ∘ 𝑥 ) ) |
| 43 |
38 39 40 41 42
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑇 ) → ( ( I ↾ 𝐵 ) + 𝑥 ) = ( ( I ↾ 𝐵 ) ∘ 𝑥 ) ) |
| 44 |
5 1 2
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 : 𝐵 –1-1-onto→ 𝐵 ) |
| 45 |
|
f1of |
⊢ ( 𝑥 : 𝐵 –1-1-onto→ 𝐵 → 𝑥 : 𝐵 ⟶ 𝐵 ) |
| 46 |
|
fcoi2 |
⊢ ( 𝑥 : 𝐵 ⟶ 𝐵 → ( ( I ↾ 𝐵 ) ∘ 𝑥 ) = 𝑥 ) |
| 47 |
44 45 46
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑇 ) → ( ( I ↾ 𝐵 ) ∘ 𝑥 ) = 𝑥 ) |
| 48 |
43 47
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑇 ) → ( ( I ↾ 𝐵 ) + 𝑥 ) = 𝑥 ) |
| 49 |
1 2
|
ltrncnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑇 ) → ◡ 𝑥 ∈ 𝑇 ) |
| 50 |
1 2 3 4
|
tgrpov |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( ◡ 𝑥 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇 ) ) → ( ◡ 𝑥 + 𝑥 ) = ( ◡ 𝑥 ∘ 𝑥 ) ) |
| 51 |
38 39 49 41 50
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑇 ) → ( ◡ 𝑥 + 𝑥 ) = ( ◡ 𝑥 ∘ 𝑥 ) ) |
| 52 |
|
f1ococnv1 |
⊢ ( 𝑥 : 𝐵 –1-1-onto→ 𝐵 → ( ◡ 𝑥 ∘ 𝑥 ) = ( I ↾ 𝐵 ) ) |
| 53 |
44 52
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑇 ) → ( ◡ 𝑥 ∘ 𝑥 ) = ( I ↾ 𝐵 ) ) |
| 54 |
51 53
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑇 ) → ( ◡ 𝑥 + 𝑥 ) = ( I ↾ 𝐵 ) ) |
| 55 |
8 9 14 36 37 48 49 54
|
isgrpd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐺 ∈ Grp ) |