Metamath Proof Explorer


Theorem tgrpabl

Description: The translation group is an Abelian group. Lemma G of Crawley p. 116. (Contributed by NM, 6-Jun-2013)

Ref Expression
Hypotheses tgrpgrp.h 𝐻 = ( LHyp ‘ 𝐾 )
tgrpgrp.g 𝐺 = ( ( TGrp ‘ 𝐾 ) ‘ 𝑊 )
Assertion tgrpabl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐺 ∈ Abel )

Proof

Step Hyp Ref Expression
1 tgrpgrp.h 𝐻 = ( LHyp ‘ 𝐾 )
2 tgrpgrp.g 𝐺 = ( ( TGrp ‘ 𝐾 ) ‘ 𝑊 )
3 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
5 1 3 2 4 tgrpbase ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( Base ‘ 𝐺 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
6 5 eqcomd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( Base ‘ 𝐺 ) )
7 eqidd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( +g𝐺 ) = ( +g𝐺 ) )
8 1 2 tgrpgrp ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐺 ∈ Grp )
9 1 3 ltrncom ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑓𝑔 ) = ( 𝑔𝑓 ) )
10 eqid ( +g𝐺 ) = ( +g𝐺 )
11 1 3 2 10 tgrpov ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑓 ( +g𝐺 ) 𝑔 ) = ( 𝑓𝑔 ) )
12 11 3expa ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑓 ( +g𝐺 ) 𝑔 ) = ( 𝑓𝑔 ) )
13 12 3impb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑓 ( +g𝐺 ) 𝑔 ) = ( 𝑓𝑔 ) )
14 1 3 2 10 tgrpov ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑔 ( +g𝐺 ) 𝑓 ) = ( 𝑔𝑓 ) )
15 14 3expa ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑔 ( +g𝐺 ) 𝑓 ) = ( 𝑔𝑓 ) )
16 15 3impb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑔 ( +g𝐺 ) 𝑓 ) = ( 𝑔𝑓 ) )
17 16 3com23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑔 ( +g𝐺 ) 𝑓 ) = ( 𝑔𝑓 ) )
18 9 13 17 3eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑓 ( +g𝐺 ) 𝑔 ) = ( 𝑔 ( +g𝐺 ) 𝑓 ) )
19 6 7 8 18 isabld ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐺 ∈ Abel )