Step |
Hyp |
Ref |
Expression |
1 |
|
tgrpgrp.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
tgrpgrp.g |
⊢ 𝐺 = ( ( TGrp ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
5 |
1 3 2 4
|
tgrpbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝐺 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
6 |
5
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( Base ‘ 𝐺 ) ) |
7 |
|
eqidd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) ) |
8 |
1 2
|
tgrpgrp |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐺 ∈ Grp ) |
9 |
1 3
|
ltrncom |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑓 ∘ 𝑔 ) = ( 𝑔 ∘ 𝑓 ) ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
11 |
1 3 2 10
|
tgrpov |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) = ( 𝑓 ∘ 𝑔 ) ) |
12 |
11
|
3expa |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) = ( 𝑓 ∘ 𝑔 ) ) |
13 |
12
|
3impb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) = ( 𝑓 ∘ 𝑔 ) ) |
14 |
1 3 2 10
|
tgrpov |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑔 ( +g ‘ 𝐺 ) 𝑓 ) = ( 𝑔 ∘ 𝑓 ) ) |
15 |
14
|
3expa |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑔 ( +g ‘ 𝐺 ) 𝑓 ) = ( 𝑔 ∘ 𝑓 ) ) |
16 |
15
|
3impb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑔 ( +g ‘ 𝐺 ) 𝑓 ) = ( 𝑔 ∘ 𝑓 ) ) |
17 |
16
|
3com23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑔 ( +g ‘ 𝐺 ) 𝑓 ) = ( 𝑔 ∘ 𝑓 ) ) |
18 |
9 13 17
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) = ( 𝑔 ( +g ‘ 𝐺 ) 𝑓 ) ) |
19 |
6 7 8 18
|
isabld |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐺 ∈ Abel ) |