Metamath Proof Explorer


Theorem tgrpabl

Description: The translation group is an Abelian group. Lemma G of Crawley p. 116. (Contributed by NM, 6-Jun-2013)

Ref Expression
Hypotheses tgrpgrp.h H=LHypK
tgrpgrp.g G=TGrpKW
Assertion tgrpabl KHLWHGAbel

Proof

Step Hyp Ref Expression
1 tgrpgrp.h H=LHypK
2 tgrpgrp.g G=TGrpKW
3 eqid LTrnKW=LTrnKW
4 eqid BaseG=BaseG
5 1 3 2 4 tgrpbase KHLWHBaseG=LTrnKW
6 5 eqcomd KHLWHLTrnKW=BaseG
7 eqidd KHLWH+G=+G
8 1 2 tgrpgrp KHLWHGGrp
9 1 3 ltrncom KHLWHfLTrnKWgLTrnKWfg=gf
10 eqid +G=+G
11 1 3 2 10 tgrpov KHLWHfLTrnKWgLTrnKWf+Gg=fg
12 11 3expa KHLWHfLTrnKWgLTrnKWf+Gg=fg
13 12 3impb KHLWHfLTrnKWgLTrnKWf+Gg=fg
14 1 3 2 10 tgrpov KHLWHgLTrnKWfLTrnKWg+Gf=gf
15 14 3expa KHLWHgLTrnKWfLTrnKWg+Gf=gf
16 15 3impb KHLWHgLTrnKWfLTrnKWg+Gf=gf
17 16 3com23 KHLWHfLTrnKWgLTrnKWg+Gf=gf
18 9 13 17 3eqtr4d KHLWHfLTrnKWgLTrnKWf+Gg=g+Gf
19 6 7 8 18 isabld KHLWHGAbel