Metamath Proof Explorer


Theorem tgrpov

Description: The group operation value of the translation group is the composition of translations. (Contributed by NM, 5-Jun-2013)

Ref Expression
Hypotheses tgrpset.h H=LHypK
tgrpset.t T=LTrnKW
tgrpset.g G=TGrpKW
tgrp.o +˙=+G
Assertion tgrpov KVWHXTYTX+˙Y=XY

Proof

Step Hyp Ref Expression
1 tgrpset.h H=LHypK
2 tgrpset.t T=LTrnKW
3 tgrpset.g G=TGrpKW
4 tgrp.o +˙=+G
5 1 2 3 4 tgrpopr KVWH+˙=fT,gTfg
6 5 3adant3 KVWHXTYT+˙=fT,gTfg
7 6 oveqd KVWHXTYTX+˙Y=XfT,gTfgY
8 simp3l KVWHXTYTXT
9 simp3r KVWHXTYTYT
10 coexg XTYTXYV
11 10 3ad2ant3 KVWHXTYTXYV
12 coeq1 f=Xfg=Xg
13 coeq2 g=YXg=XY
14 eqid fT,gTfg=fT,gTfg
15 12 13 14 ovmpog XTYTXYVXfT,gTfgY=XY
16 8 9 11 15 syl3anc KVWHXTYTXfT,gTfgY=XY
17 7 16 eqtrd KVWHXTYTX+˙Y=XY