Metamath Proof Explorer


Theorem tgrpov

Description: The group operation value of the translation group is the composition of translations. (Contributed by NM, 5-Jun-2013)

Ref Expression
Hypotheses tgrpset.h H = LHyp K
tgrpset.t T = LTrn K W
tgrpset.g G = TGrp K W
tgrp.o + ˙ = + G
Assertion tgrpov K V W H X T Y T X + ˙ Y = X Y

Proof

Step Hyp Ref Expression
1 tgrpset.h H = LHyp K
2 tgrpset.t T = LTrn K W
3 tgrpset.g G = TGrp K W
4 tgrp.o + ˙ = + G
5 1 2 3 4 tgrpopr K V W H + ˙ = f T , g T f g
6 5 3adant3 K V W H X T Y T + ˙ = f T , g T f g
7 6 oveqd K V W H X T Y T X + ˙ Y = X f T , g T f g Y
8 simp3l K V W H X T Y T X T
9 simp3r K V W H X T Y T Y T
10 coexg X T Y T X Y V
11 10 3ad2ant3 K V W H X T Y T X Y V
12 coeq1 f = X f g = X g
13 coeq2 g = Y X g = X Y
14 eqid f T , g T f g = f T , g T f g
15 12 13 14 ovmpog X T Y T X Y V X f T , g T f g Y = X Y
16 8 9 11 15 syl3anc K V W H X T Y T X f T , g T f g Y = X Y
17 7 16 eqtrd K V W H X T Y T X + ˙ Y = X Y