Metamath Proof Explorer


Theorem tgrpopr

Description: The group operation of the translation group is function composition. (Contributed by NM, 5-Jun-2013)

Ref Expression
Hypotheses tgrpset.h H = LHyp K
tgrpset.t T = LTrn K W
tgrpset.g G = TGrp K W
tgrp.o + ˙ = + G
Assertion tgrpopr K V W H + ˙ = f T , g T f g

Proof

Step Hyp Ref Expression
1 tgrpset.h H = LHyp K
2 tgrpset.t T = LTrn K W
3 tgrpset.g G = TGrp K W
4 tgrp.o + ˙ = + G
5 1 2 3 tgrpset K V W H G = Base ndx T + ndx f T , g T f g
6 5 fveq2d K V W H + G = + Base ndx T + ndx f T , g T f g
7 2 fvexi T V
8 7 7 mpoex f T , g T f g V
9 eqid Base ndx T + ndx f T , g T f g = Base ndx T + ndx f T , g T f g
10 9 grpplusg f T , g T f g V f T , g T f g = + Base ndx T + ndx f T , g T f g
11 8 10 ax-mp f T , g T f g = + Base ndx T + ndx f T , g T f g
12 6 4 11 3eqtr4g K V W H + ˙ = f T , g T f g