Step |
Hyp |
Ref |
Expression |
1 |
|
tgrpgrp.h |
|- H = ( LHyp ` K ) |
2 |
|
tgrpgrp.g |
|- G = ( ( TGrp ` K ) ` W ) |
3 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
5 |
1 3 2 4
|
tgrpbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` G ) = ( ( LTrn ` K ) ` W ) ) |
6 |
5
|
eqcomd |
|- ( ( K e. HL /\ W e. H ) -> ( ( LTrn ` K ) ` W ) = ( Base ` G ) ) |
7 |
|
eqidd |
|- ( ( K e. HL /\ W e. H ) -> ( +g ` G ) = ( +g ` G ) ) |
8 |
1 2
|
tgrpgrp |
|- ( ( K e. HL /\ W e. H ) -> G e. Grp ) |
9 |
1 3
|
ltrncom |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( ( LTrn ` K ) ` W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> ( f o. g ) = ( g o. f ) ) |
10 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
11 |
1 3 2 10
|
tgrpov |
|- ( ( K e. HL /\ W e. H /\ ( f e. ( ( LTrn ` K ) ` W ) /\ g e. ( ( LTrn ` K ) ` W ) ) ) -> ( f ( +g ` G ) g ) = ( f o. g ) ) |
12 |
11
|
3expa |
|- ( ( ( K e. HL /\ W e. H ) /\ ( f e. ( ( LTrn ` K ) ` W ) /\ g e. ( ( LTrn ` K ) ` W ) ) ) -> ( f ( +g ` G ) g ) = ( f o. g ) ) |
13 |
12
|
3impb |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( ( LTrn ` K ) ` W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> ( f ( +g ` G ) g ) = ( f o. g ) ) |
14 |
1 3 2 10
|
tgrpov |
|- ( ( K e. HL /\ W e. H /\ ( g e. ( ( LTrn ` K ) ` W ) /\ f e. ( ( LTrn ` K ) ` W ) ) ) -> ( g ( +g ` G ) f ) = ( g o. f ) ) |
15 |
14
|
3expa |
|- ( ( ( K e. HL /\ W e. H ) /\ ( g e. ( ( LTrn ` K ) ` W ) /\ f e. ( ( LTrn ` K ) ` W ) ) ) -> ( g ( +g ` G ) f ) = ( g o. f ) ) |
16 |
15
|
3impb |
|- ( ( ( K e. HL /\ W e. H ) /\ g e. ( ( LTrn ` K ) ` W ) /\ f e. ( ( LTrn ` K ) ` W ) ) -> ( g ( +g ` G ) f ) = ( g o. f ) ) |
17 |
16
|
3com23 |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( ( LTrn ` K ) ` W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> ( g ( +g ` G ) f ) = ( g o. f ) ) |
18 |
9 13 17
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. ( ( LTrn ` K ) ` W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> ( f ( +g ` G ) g ) = ( g ( +g ` G ) f ) ) |
19 |
6 7 8 18
|
isabld |
|- ( ( K e. HL /\ W e. H ) -> G e. Abel ) |