Metamath Proof Explorer


Theorem tgrpbase

Description: The base set of the translation group is the set of all translations (for a fiducial co-atom W ). (Contributed by NM, 5-Jun-2013)

Ref Expression
Hypotheses tgrpset.h H = LHyp K
tgrpset.t T = LTrn K W
tgrpset.g G = TGrp K W
tgrp.c C = Base G
Assertion tgrpbase K V W H C = T

Proof

Step Hyp Ref Expression
1 tgrpset.h H = LHyp K
2 tgrpset.t T = LTrn K W
3 tgrpset.g G = TGrp K W
4 tgrp.c C = Base G
5 1 2 3 tgrpset K V W H G = Base ndx T + ndx f T , g T f g
6 5 fveq2d K V W H Base G = Base Base ndx T + ndx f T , g T f g
7 2 fvexi T V
8 eqid Base ndx T + ndx f T , g T f g = Base ndx T + ndx f T , g T f g
9 8 grpbase T V T = Base Base ndx T + ndx f T , g T f g
10 7 9 ax-mp T = Base Base ndx T + ndx f T , g T f g
11 6 4 10 3eqtr4g K V W H C = T