Metamath Proof Explorer


Theorem thincepi

Description: In a thin category, all morphisms are epimorphisms. The converse does not hold. See grptcepi . (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses thincid.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
thincid.b B = Base C
thincid.h H = Hom C
thincid.x φ X B
thincmon.y φ Y B
thincepi.e E = Epi C
Assertion thincepi φ X E Y = X H Y

Proof

Step Hyp Ref Expression
1 thincid.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
2 thincid.b B = Base C
3 thincid.h H = Hom C
4 thincid.x φ X B
5 thincmon.y φ Y B
6 thincepi.e E = Epi C
7 5 adantr φ z B g Y H z h Y H z Y B
8 simpr1 φ z B g Y H z h Y H z z B
9 simpr2 φ z B g Y H z h Y H z g Y H z
10 simpr3 φ z B g Y H z h Y H z h Y H z
11 1 adantr Could not format ( ( ph /\ ( z e. B /\ g e. ( Y H z ) /\ h e. ( Y H z ) ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( ph /\ ( z e. B /\ g e. ( Y H z ) /\ h e. ( Y H z ) ) ) -> C e. ThinCat ) with typecode |-
12 7 8 9 10 2 3 11 thincmo2 φ z B g Y H z h Y H z g = h
13 12 a1d φ z B g Y H z h Y H z g X Y comp C z f = h X Y comp C z f g = h
14 13 ralrimivvva φ z B g Y H z h Y H z g X Y comp C z f = h X Y comp C z f g = h
15 eqid comp C = comp C
16 1 thinccd φ C Cat
17 2 3 15 6 16 4 5 isepi2 φ f X E Y f X H Y z B g Y H z h Y H z g X Y comp C z f = h X Y comp C z f g = h
18 14 17 mpbiran2d φ f X E Y f X H Y
19 18 eqrdv φ X E Y = X H Y