Metamath Proof Explorer


Theorem topnex

Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex ; an alternate proof uses indiscrete topologies (see indistop ) and the analogue of pwnex with pairs { (/) , x } instead of power sets ~P x (that analogue is also a consequence of abnex ). (Contributed by BJ, 2-May-2021)

Ref Expression
Assertion topnex TopV

Proof

Step Hyp Ref Expression
1 pwnex y|xy=𝒫xV
2 1 neli ¬y|xy=𝒫xV
3 distop xV𝒫xTop
4 3 elv 𝒫xTop
5 eleq1 y=𝒫xyTop𝒫xTop
6 4 5 mpbiri y=𝒫xyTop
7 6 exlimiv xy=𝒫xyTop
8 7 abssi y|xy=𝒫xTop
9 ssexg y|xy=𝒫xTopTopVy|xy=𝒫xV
10 8 9 mpan TopVy|xy=𝒫xV
11 2 10 mto ¬TopV
12 11 nelir TopV