Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex ; an alternate proof uses indiscrete topologies (see indistop ) and the analogue of pwnex with pairs { (/) , x } instead of power sets ~P x (that analogue is also a consequence of abnex ). (Contributed by BJ, 2-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | topnex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwnex | |
|
2 | 1 | neli | |
3 | distop | |
|
4 | 3 | elv | |
5 | eleq1 | |
|
6 | 4 5 | mpbiri | |
7 | 6 | exlimiv | |
8 | 7 | abssi | |
9 | ssexg | |
|
10 | 8 9 | mpan | |
11 | 2 10 | mto | |
12 | 11 | nelir | |