Metamath Proof Explorer


Theorem toponcomb

Description: Biconditional form of toponcom . (Contributed by BJ, 5-Dec-2021)

Ref Expression
Assertion toponcomb JTopKTopJTopOnKKTopOnJ

Proof

Step Hyp Ref Expression
1 toponcom KTopJTopOnKKTopOnJ
2 1 ex KTopJTopOnKKTopOnJ
3 2 adantl JTopKTopJTopOnKKTopOnJ
4 toponcom JTopKTopOnJJTopOnK
5 4 ex JTopKTopOnJJTopOnK
6 5 adantr JTopKTopKTopOnJJTopOnK
7 3 6 impbid JTopKTopJTopOnKKTopOnJ