Metamath Proof Explorer


Theorem tpos0

Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015)

Ref Expression
Assertion tpos0 tpos=

Proof

Step Hyp Ref Expression
1 rel0 Rel
2 eqid =
3 fn0 Fn=
4 2 3 mpbir Fn
5 tposfn2 RelFntposFn-1
6 1 4 5 mp2 tposFn-1
7 cnv0 -1=
8 7 fneq2i tposFn-1tposFn
9 6 8 mpbi tposFn
10 fn0 tposFntpos=
11 9 10 mpbi tpos=