Metamath Proof Explorer


Theorem tposcurfcl

Description: The transposed curry functor of a functor F : D X. C --> E is a functor tposcurry ( F ) : C --> ( D --> E ) . (Contributed by Zhi Wang, 9-Oct-2025)

Ref Expression
Hypotheses tposcurfcl.g No typesetting found for |- ( ph -> G = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) with typecode |-
tposcurfcl.q Q = D FuncCat E
tposcurfcl.c φ C Cat
tposcurfcl.d φ D Cat
tposcurfcl.f φ F D × c C Func E
Assertion tposcurfcl φ G C Func Q

Proof

Step Hyp Ref Expression
1 tposcurfcl.g Could not format ( ph -> G = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) : No typesetting found for |- ( ph -> G = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) with typecode |-
2 tposcurfcl.q Q = D FuncCat E
3 tposcurfcl.c φ C Cat
4 tposcurfcl.d φ D Cat
5 tposcurfcl.f φ F D × c C Func E
6 eqid Could not format ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) : No typesetting found for |- ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) with typecode |-
7 eqidd Could not format ( ph -> ( F o.func ( C swapF D ) ) = ( F o.func ( C swapF D ) ) ) : No typesetting found for |- ( ph -> ( F o.func ( C swapF D ) ) = ( F o.func ( C swapF D ) ) ) with typecode |-
8 3 4 5 7 cofuswapfcl Could not format ( ph -> ( F o.func ( C swapF D ) ) e. ( ( C Xc. D ) Func E ) ) : No typesetting found for |- ( ph -> ( F o.func ( C swapF D ) ) e. ( ( C Xc. D ) Func E ) ) with typecode |-
9 6 2 3 4 8 curfcl Could not format ( ph -> ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) e. ( C Func Q ) ) : No typesetting found for |- ( ph -> ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) e. ( C Func Q ) ) with typecode |-
10 1 9 eqeltrd φ G C Func Q